A

120 MINUTES

1. Let A, B and C be non-empty sets and let X = (A - B) - C and Y = (A - C) - (B - C). Which of the following is TRUE ?

A) $X \subset Y$ B) X = Y C) $X \supset Y$ D) None of these

2. The distance of the plane $\vec{r} \cdot (2i + 3j - 6k) + 2 = 0$ from the origin is

A) 2 B) 14 C)
$$\frac{2}{7}$$
 D) $-\frac{2}{7}$

3. If f(x) is differentiable in the interval (2,5) where $f(2) = \frac{1}{5}$ and $f(5) = \frac{1}{2}$, then there exist a number c, 2 < c < 5 for which f'(c) is

A)
$$\frac{1}{2}$$
 B) $\frac{1}{5}$ C) $\frac{1}{10}$ D) 10

4. Two independent events E and F are such that $P(E \cap F) = \frac{1}{6}$ and $P(E^c \cap F^c) = \frac{1}{3}$, P(E) > P(F). Then P(E) is

A)
$$\frac{1}{2}$$
 B) $\frac{2}{3}$ C) $\frac{1}{3}$ D) $\frac{1}{4}$

5. How many four digit even numbers have all four digits distinct?

A) 2240 B) 2296 C) 2620 D) 4536

- 6. Which of the following is NOT TRUE ?
 - A) If f is differentiable at a point, then f is continuous at that point.
 - B) If f is differentiable at a point , then |f| is also differentiable there .
 - C) If |f| is differentiable at a point, then it need not be true that f is differentiable there.
 - D) If f is differentiable at a point , then $\frac{1}{f}$ is also differentiable at c , provided $f(c) \neq 0$.
- 7. Which of the following series converge ?

A) $\sum_{n=1}^{\infty} \sin n$ B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ C) $\sum_{n=1}^{\infty} \frac{1}{n!}$ D) $\sum_{n=1}^{\infty} \log \frac{n+1}{n}$

- 8. The integral $\int_0^3 [x] dx$ where [x] is the greatest integer less than or equal to x is
 - A) 0 B) 1 C) 2 D) 3

9. Which of the following functions is NOT of bounded variation

A)
$$f(x) = x^2 + x + 1$$
 for $x \in (-1,1)$
B) $f(x) = tan\left(\frac{\pi x}{2}\right)$ for $x \in (-1,1)$
C) $f(x) = sin\left(\frac{x}{2}\right)$ for $x \in (-\pi,\pi)$
D) $f(x) = \sqrt{1 - x^2}$ for $x \in (-1,1)$

10. Consider a function f(z) = u + iv defined on |z - i| < 1 where u and v are real valued functions of , y. Then f(z) is analytic for

A)
$$u = x^{2} + y^{2}$$

B) $u = e^{xy}$
C) $u = \ln(x^{2} + y^{2})$
D) $u = e^{x^{2} - y^{2}}$

11. The residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ at z = -1 is

A)
$$2e$$
 B) $\frac{2}{e}$ C) $\frac{2}{e^2}$ D) e

12. The radius of convergence of the series $\sum_{n=1}^{\infty} 2^{-n} z^{2n}$ is

A) 1 B)
$$\sqrt{2}$$
 C) 2 D) ∞

13. Let (G,*) be an abelian group. Then which of the following is TRUE for G?

A)
$$g = g^{-1}$$
 for all $g \in G$. C) $(g * h)^2 = g^2 * h^2$ for all $g, h \in G$.

B)
$$g = g^2$$
 for all $g \in G$. D) G is of finite order

14. If $f: G \to G'$ is a homomorphism and e, e' are identity elements of G and G' respectively. Then which of the following is TRUE ?

A)
$$f(e) = e'$$

B) $f(x^{-1}) = (f(x))^{-1}$
C) $f(x^n) = (f(x))^n$
D) All of these

- 15. Which of the following statements is NOT TRUE about Integral Domain.
 - A) For a given prime , the ring $(Z_p, +_p, ._p)$ is an Integral Domain .
 - B) Every field is an Integral Domain.
 - C) A commutative ring R with unity is an Integral Domain if and only

if ab = 0, $a, b \in \mathbb{R}$, $a \neq 0$ implies = 0.

D) Every Integral Domain is a Field.

16. Let $I = \{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{Z} \}$ be the subring of the ring $(M_2(\mathbb{Z}), +, .)$, where $M_2(\mathbb{Z})$ denote the set of all 2 × 2 matrices whose entries are elements from \mathbb{Z} . Which of the following is TRUE ?

A) *I* is an ideal of \mathbb{R} . C) *I* is a right ideal but not a left ideal of \mathbb{R} .

- B) I is a left ideal but not a right ideal of \mathbb{R} . D) I is neither a left ideal nor a right ideal of \mathbb{R} .
- 17. For an ideal *I* of a ring , the mapping $\gamma: R \to R/I$ be defined by $\gamma(a) = a + I$, $a \in R$. Then which of the following is TRUE ?
 - A) $\gamma(a + b) = \gamma(a) + \gamma(b), \forall a, b \in R$ C) γ is a homomorphism
 - B) $\gamma: R \to R/I$ is onto D) All of these
- 18. The polynomial $p(x) = x^3 x 1$ defined over \mathbb{Q} is
 - A) Irreducible over \mathbb{Q} C) Reducible over \mathbb{Z}
 - B) Reducible over \mathbb{Q} D) reducible over \mathbb{N}
- 19. $Q(\sqrt{2}, \sqrt{3})$ is the splitting field of

A)
$$x^2 - 2$$
 B) $(x^2 - 2)(x^2 - 3)$ C) $x^2 - 3$ D) $(x - 2)(x - 3)$

20. The number of elements in the field $\frac{Z_2[x]}{\langle x^3 + x^2 + 1 \rangle}$ is

A) 2 B) 4 C) 8 D) 16
21. The rank of the matrix
$$\begin{pmatrix} 3 & 2 & 5 \\ -1 & 0 & 2 \\ 11 & 6 & 11 \end{pmatrix}$$
 is
A) 0 B) 1 C) 2 D) 3

22. The system of linear equations : x - 2y + 3z = -2; -x + y - 2z = 3; 2x - y + 3z = 1 has

- A) Unique solution C) Infinite solution
- B) No solution D) None of these

23. Which of the following subsets of the vectorspace \mathbb{R}^3 over \mathbb{R} is a subspace ?

A) $W = \{(x_1, x_2, x_3) | x_3 = 1\}$ C) $W = \{(x_1, x_2, x_3) | x_2 > 0\}$

B) $W = \{(x_1, x_2, x_3) | x_3 = 0\}$ D) None of these

24. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T(1,2) = (2,3) and T(0,1) = (1,4). Then T(5,6) is

- A) (6,-1) C) (-6,1)
- B) (-1,6) D) (1,-6)

25. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = (x + y, y + z, z + x) for all $(x, y, z) \in \mathbb{R}^3$. Then

A) Rank(T)=0 and Nullity(T)=3 C) Rank(T)=1 and Nullity(T)=2

B) $\operatorname{Rank}(T)=2$ and $\operatorname{Nullity}(T)=1$ D) $\operatorname{Rank}(T)=3$ and $\operatorname{Nullity}(T)=0$

26. The integrating factor of $\frac{dy}{dx} + (\tan x)y = \cos^2 x$ is

A) $\cos x$ C) $\sec x$

B)
$$-\cos x$$
 D) $-\sec x$

27. The *orthogonal* trajectory of the curve xy = c is

A) $x^{2} - y^{2} = k$ B) $2x^{2} - y^{2} = k$ C) $x^{2} + y^{2} = k$ D) None of these

28. The differential equation for variation of the amount of salt x in a tank with time t is given by $\frac{dx}{dt} + \frac{x}{20} = 10$ where x is in kg and t is in minutes. Assuming there is no salt in tank initially, the time t in which the amount of salt increases to 100kg is

A) 10 ln 2	C) 20 ln 2
B) 50 ln 2	D) 100 ln 2

29. The partial differential equation of all spheres whose centre lie on the z - axis is

A) $py = qx$	C) $px = qy$
B) $px + qy = 0$	D) $py + qx = 0$

30. The number of integer less than 200 and relatively prime to it is

A) 98 B) 100 C) 101 D) 102

31. If $a \equiv b \pmod{m}$ means a - b is a multiple of m, then which of the following is NOT TRUE?

A)
$$12^{25} \equiv 2 \pmod{5}$$
 C) $13^{121} \equiv 2 \pmod{11}$
B) $8^{36} \equiv 2 \pmod{6}$ D) $9^{49} \equiv 2 \pmod{7}$

32. If $a \in \mathbb{Z}$ and p is a prime not dividing a then p divides

- A) $a^{p-1} 1$ C) $a^p 1$
- B) $a^{p+1} 1$ D) $a^{p+2} 1$

33. Let $f: X \to Y$ be a closed bijective map between metric spaces X and Y such that Y is compact then :

A) X need not be compact but f is continuous

B) X is compact but f need not be continuous

- C) X need not be compact and f need not be continuous
- D) X is compact and f is continuous

34. Which of the following is not a topological property

- A) Openness C) Compactness
- B) Closedness D) Boundedness
- 35. If X is a finite set then the cofinite topology on X is
 - A) Discrete C) Empty set
 - B) Indiscrete D) None of these

36. Let H be a Hilbert space and let x, y be any two vectors in H. Then

- A) $||x + y||^2 + ||x y||^2 = ||x||^2 + ||y||^2$ B) $|\langle x, y \rangle| > ||x|| ||y||$ C) $2(||x + y||^2 + ||x - y||^2) = ||x||^2 + ||y||^2$ D) $x_n \rightarrow x$ and $y_n \rightarrow y$ implies $\langle x_n, y_n \rangle \rightarrow \langle x, y \rangle$
- 37. Let X be a normed linear space and x_o be a non zero vector in X. Then there exist a functional f_o in X' such that

A) $f_o(x_o) = x_o$ and $ f_o = 1$	C) $f_o(x_o) = 1$ and $ f_o = 1$
B) $f_o(x_o) = x_o $ and $ f_o = 1$	D) $f_o(x_o) = 1$ and $ f_o \ge 1$

38. Let X and Y be a Banach space. If $f: X \to Y$ is a continuous linear transformation, then

A) *T* is closed B) *T* is open C) Range of *T* is finite dimensional D) None of these 39. Let *X* be a Banach algebra and $x \in X$, then the spectral radius is

A) $\lim_{n \to \infty} \|x^n\|^{1/n}$ B) $\lim_{n \to \infty} \|x^{1/n}\|^n$ D) $\lim_{n \to \infty} \|x^n\|^n$

- 40. The function $f(x) = x^2 2$ defined on the set of real numbers is
 - (A) injective but not surjective (C) surjective but not injective
 - (B) neither injective nor surjective (D) both injective and surjective
- 41. A man is watching from the top of a tower, a boat speeding away from the tower. The angle of depression from the top of the tower to the boat is 60° when the boat is 80m from the tower. After 10 seconds, the angle becomes 30° . What is the speed of the boat? (Assume that the boat is running in still water)
 - (A) 20m/sec (B) 10m/sec (C) 18m/sec (D) 16m/sec
- 42. The equation to the straight line which passes through the point (-5, 4) and is such that the portion of it between the axes is divided by this point in the ratio 1:2 is
 - (A) 5x + 8y = 7(B) 5x - 8y = -57(C) 5y + 8x = -20(D) 5y - 8x = 60
- 43. The equation of the hyperbola whose vertices are at $(\pm 6, 0)$ and one of the directrices is x = 4 is
 - (A) $\frac{x^2}{45} \frac{y^2}{36} = 1$ (B) $\frac{x^2}{36} - \frac{y^2}{45} = 1$ (C) $\frac{x^2}{25} - \frac{y^2}{36} = 1$ (D) none of these πx
- 44. $\lim_{x\to 1} (2-x)^{\tan \frac{\pi x}{2}}$ is equal to
 - (A) $e^{1/\pi}$ (B) $e^{2/\pi}$ (C) $e^{3/\pi}$ (D) $\frac{2}{\pi}$
- 45. Equation to the normal to the curve $x^2 + y^2 = 5$ at the point (2,1) is
 - (A) x 2y = 0(B) x + 2y = 0(C) x - 2y = 3(D) x + 2y = 3
- 46. Area enclosed by the curve $27x^2 + 12y^2 324 = 0$ between the lines x = 0 and $x = 2\sqrt{3}$ is
 - (A) 7π (B) 9π (C) 2π (D) $\frac{\pi}{2}$

- 47. A card is drawn from a well shuffled pack of 52 cards. The probability that the card drawn is a queen of clubs or a king of hearts is
 - (A) $\frac{1}{26}$ (B) $\frac{1}{52}$ (C) $\frac{1}{13}$ (D) $\frac{1}{2}$
- 48. Which among the following is a *false* statement ?
 - (A) Any bounded sequence of real numbers contains a convergent sub sequence.
 - (B) A sequence of real numbers is convergent if and only if it is a Cauchy sequence.
 - (C) If a is an accumulation point of a sequence $\{x_n\}_{n=1}^{\infty}$, then there is a sub sequence that converges to a.
 - (D) Any sequence $\{x_n\}_{n=1}^{\infty}$ is convergent if and only if it is bounded.
- 49. If a function f is monotonic on [a, b], then the set of discontinuities of f is
 - (A) empty (B) finite (C) countable (D) [a, b]
- 50. Let A be the set of all rational numbers in the interval [0, 1], and α be the Lebesgue measure of A, then α is equal to
 - (A) zero (B) one (C) infinity (D) none of these
- 51. The harmonic conjugate of the function $e^x \cos y + e^y \cos x + xy$ is
 - (A) $e^x \sin y e^y \sin x + \frac{1}{2}(x^2 + y^2)$ (C) $e^x \sin y + e^y \sin x \frac{1}{2}(x^2 + y^2)$ (B) $e^x \sin y + e^y \sin x + \frac{1}{2}(x^2 + y^2)$ (D) none of these
- 52. The Mobius transformation T(z) that maps $z_1 = 1$, $z_2 = 0$, $z_3 = -1$ onto the points $w_1 = i$, $w_2 = \infty$, $w_3 = 1$ is
 - (A) $T(z) = \frac{(i-1)z + (i+1)}{2z}$ (B) $T(z) = \frac{(i+1)z + (i-1)}{2z}$ (C) $T(z) = \frac{(i-1)z - (i+1)}{2z}$ (D) none of these
- 53. The value of the integral $\int \frac{1}{z^2 + 4} dz$ around the circle |z i| = 2 oriented in counter clockwise direction is
 - (A) zero (B) π (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{4}$

54. Let G be a group, $a \in G$ and $H = \{a^n | n \in \mathbb{Z}\}$ where \mathbb{Z} is the set of integers. Then which of the following is *not* true? (A) H is a subgroup of G(B) G and H have the same identity (C) H is the smallest subgroup of G containing the element a(D) None of these 55. The number of abelian groups (up to isomorphism) of order 24 is (C) 8 (A) 2(B) 3 (D) None of these 56. Number of left cosets of the subgroup $\langle 18 \rangle$ of \mathcal{Z}_{36} is (A) 18 (B) 36 (C) 4 (D) none of these 57. If U denotes the set of units in the ring of rational numbers \mathcal{Q} , then (A) $U = \{1\}$ (C) U is empty (B) $U = \{1, 2\}$ (D) U consists of all non-zero elements of \mathcal{Q} 58. The characteristic of the ring \mathcal{C} of complex numbers is (A) zero (B) one (C) infinity (D) none of these 59. The degree over \mathcal{Q} of the splitting field over \mathcal{Q} of the polynomial $x^2 + 3$ in $\mathcal{Q}[x]$ is (A) Zero (C) 2 (B) 1(D) none of these 60. If $A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$, then $(AB)^{-1}$ is equal to (C) $\frac{1}{11} \begin{pmatrix} 5 & 1 \\ 14 & 5 \end{pmatrix}$ (A) $\frac{1}{11}\begin{pmatrix} 2 & 3\\ 1 & -4 \end{pmatrix}$ (D) $\frac{1}{11} \begin{pmatrix} 14 & 5 \\ 5 & 1 \end{pmatrix}$ (B) $\frac{1}{11} \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$ 61. The value of the determinant $\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix}$ is equal to (C) $(a^3 + b^3)^2$ (A) $(a^6 + b^6)$ (B) $(a^6 - b^6)$ (D) $(a^3 - b^3)^2$

- 62. If the vector (3k+2, 3, 10) belongs to the linear span of the set $S = \{(-1, 0, 1), (2, 1, 4)\}$, then the value of k is
 - (A) 2 (B) -2 (C) 1 (D) -1
- 63. If the dimensions of the subspaces \mathcal{U} and \mathcal{V} of the vector space \mathcal{W} are respectively 3 and 4 and $\dim(\mathcal{U} \cap \mathcal{V}) = 1$, then $\dim(\mathcal{U} + \mathcal{V})$ is equal to
 - (A) 4 (B) 6 (C) 7 (D) none of these
- 64. Which of the following is a subspace of the two dimensional Euclidean plane?
 - (A) 2x + 3y = 0(B) 2x + 3y + 1 = 0(C) 2x - 3y + 1 = 0(D) 2x + 3y - 1 = 0
- 65. If $T: \mathcal{R}^3 \to \mathcal{R}^2$ is defined by T(x, y, z) = (x, y), then the dimension of the kernel of T is
 - (A) 0 (B) 1 (C) 2 (D) indeterminate
- 66. The characteristic polynomial of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$ is
 - (A) $\lambda^3 + 6\lambda^2 11\lambda + 6$ (B) $\lambda^3 + 6\lambda^2 - 11\lambda - 6$ (C) $\lambda^3 - 6\lambda^2 + 11\lambda - 6$ (D) none of these
- 67. A matrix A is diagonalizable if the roots of its characteristic polynomial are
 - (A) real and equal(B) real and distinct(C) imaginary(D) none of these

68. If gcd(a, b) = d, then $gcd\left(\frac{a}{d}, \frac{b}{d}\right)$ is equal to (A) $\frac{ab}{d}$ (B) d (C) d^2 (D) 1

- 69. The remainder when 97! (factorial) is divided by 101 is
 - (A) 15 (C) 17
 - (B) 16 (D) none of these

70. The differential equation of the family of all concentric circles centred at the origin is

(A)
$$y + x \frac{dy}{dx} = c$$

(B) $y - x \frac{dy}{dx} = c$
(C) $x + y \frac{dy}{dx} = 0$
(D) none of these

71. The solution of the differential equation $(y^2 - y)dx + xdy = 0$ is

(A)
$$y(x+c) = x$$
 (C) $x(y+c) = x$

(B)
$$x(x+c) = y$$
 (D) none of these

72. Complete solution of the partial differential equation $p^2 + q^2 = m^2$ is

- (A) $z = ax y\sqrt{m^2 + a^2} + b$ (C) $z = ax + y\sqrt{m^2 a^2} + b$ (B) $z = ax + y\sqrt{m^2 + a^2} + b$ (D) none of these
- 73. The partial differential equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + 3\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$ is (A) parabolic (B) elliptic
- 74. In a metric space, every one point set is
 - (A) open (C) both open and closed
 - (B) closed

(D) neither open nor closed

(C) hyperbolic

(D) none of these

75. In the metric space (\mathcal{R}^2, d_1) , where $d_1(x, y) = |x_1 - y_1| + |x_2 - y_2|$ for $x = (x_1, x_2)$ and $y = (y_1, y_2)$, the sequence $\left\{ \left(\frac{1}{n}, \frac{2n+1}{n+1}\right) \right\}$ converges to (A) (1,0) (B) (0,1) (C) (0,2) (D) (2,0)

76. In a topological space, which of the following is a *wrong* statement?

- (A) Second countability is a hereditary property
- (B) Metrizability is a hereditary property
- (C) Regularity is a hereditary property
- (D) None of these

- 77. Which of the following statements is not true?
 - (A) A subset of \mathcal{R} is connected if and only if it is an interval
 - (B) Every closed and bounded interval is compact
 - (C) Closure of a connected subset is connected
 - (D) None of these
- 78. Let X be a normed linear space over the field K. E_1 and E_2 are non-empty disjoint convex subsets of X with E_1 open. Then there exist $f \in X'$ and $\alpha \in \mathcal{R}$, for all $x_1 \in E_1$ and $x_2 \in E_2$ such that
 - (A) $\operatorname{Re} f(x_1) \le \alpha \le \operatorname{Re} f(x_2)$
 - (B) $\operatorname{Re} f(x_1) \le \alpha < \operatorname{Re} f(x_2)$
 - (C) $\operatorname{Re} f(x_1) < \alpha < \operatorname{Re} f(x_2)$
 - (D) $\operatorname{Re} f(x_1) < \alpha \leq \operatorname{Re} f(x_2)$
- 79. Let X and Y be Banach spaces and B(X, Y) denotes the set of bounded linear maps from X to Y. Then which of the following statements is *not* true?
 - (A) Every closed linear map $A: X \to Y$ is continuous
 - (B) If $A \in B(X, Y)$ is surjective, then A is an open map
 - (C) If $A \in B(X, Y)$ is bijective, then $A^{-1} \in B(Y, X)$
 - (D) None of these
- 80. Let $\{u_1, u_2, \dots, u_m\}$ be an orthonormal set in an inner product space X. Then for $x \in X$, $\sum_{n=1}^{m} |\langle x, u_n \rangle|^2 = ||x||^2$ if and only if
 - (A) $x \in \{u_1, u_2, \cdots, u_m\}$ (B) $x \notin \{u_1, u_2, \cdots, u_m\}$ (C) $x \in \text{span}\{u_1, u_2, \cdots, u_m\}$
 - (D) $x \notin \operatorname{span}\{u_1, u_2, \cdots, u_m\}$